Titanium-Based Hip Stems with Drug Delivery Functionality through Additive Manufacturing
نویسندگان
چکیده
Postoperative infections are a major concern in patients that receive implants. These infections generally occur in areas with poor blood flow and pathogens do not always respond to antibiotic treatment. With the latest developments in nanotechnology, the incorporation of antibiotics into prosthetic implants may soon become a standard procedure. The success will, however, depend on the ability to control the release of antibiotics at concentrations high enough to prevent the development of antibiotic-resistant strains. Through additive manufacturing, antibiotics can be incorporated into cementless femoral stems to produce prosthetic devices with antimicrobial properties. With the emerging increase in resistance to antibiotics, the incorporation of antimicrobial compounds other than antibiotics, preferably drugs with a broader spectrum of antimicrobial activity, will have to be explored. This review highlights the microorganisms associated with total hip arthroplasty (THA), discusses the advantages and disadvantages of the latest materials used in hip implants, compares different antimicrobial agents that could be incorporated, and addresses novel ideas for future research.
منابع مشابه
Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.
Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surfac...
متن کاملPolymers for 3D Printing and Customized Additive Manufacturing
Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet...
متن کاملTapered modular fluted titanium stems for femoral fixation in revision total knee arthroplasty
Consensus regarding femoral stem fixation options in revision total knee arthroplasty remains controversial. Tapered, modular, fluted titanium (TMFT) stems have an excellent track record in total hip arthroplasty for their ability to provide axial and rotational stability in situations of compromised host bone. We present 3 successfully treated cases in which the Food & Drug Administration gran...
متن کاملLaser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants
Additive Manufacturing (AM) methods are generally used to produce an early sample or near net-shape elements based on three-dimensional geometrical modules. To date, publications on AM of metal implants have mainly focused on knee and hip replacements or bone scaffolds for tissue engineering. The direct fabrication of metallic implants can be achieved by methods, such as Selective Laser Melting...
متن کاملAssessment of retention force and bone apposition in two differently coated femoral stems after 6 months of loading in a goat model
BACKGROUND Since the introduction of uncemented hip implants, there has been a search for the best surface coating to enhance bone apposition in order to improve retention. The surface coating of the different stems varies between products. The aim was to assess the retention force and bone adaption in two differently coated stems in a weight-bearing goat model. MATERIALS AND METHODS Hydroxya...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015